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Fig. 1 shows that the various coordinates in (15) can be 
replaced as follows: 

Yt = r12 sin ~0~ Z1 = rx2 cos (0x 
Z3 = r23 Z4 =/'*23 --/'34 COS (/92 

( X 2 +  y]) l /2  = r34 sin ~02, 

where r,,, is the distance between atoms m and n. Equation 
(15) for the variance of the torsion angle, z, then becomes: 

o2 [( ) O.2(~. ) = . O" ] -t- - -  r23 -- r12 COS (01 2 
rx2 sin 2 ~ot r23 r12 sign ~0~ 

- - 2 (  r23- rl2 cOs tpl ) ] 
_ cot (02 COS "c + cot 2 q72 

r12 sin ~t 

+ ~-[r232 cot 2 ~at-- 2 ( r23--r34 c°s ~2 ) cOt ~1 cOS " c r 3 4  sin" ~2 

+ (r2  r 4cos 2) ] 
_ + (16) 

r34 sin ~P2 r3,~ sin 2 ~P2 

Use of the special coordinates in (8') leads to the torsion 
angle: 

I14 
Irl = c ° s - 1  (X2+ y 2 ) 1 / 2  • (17) 

The convention of the 'right-hand rule' (Klyne & Prelog, 
1960) is used to fix the sign of ~:. In order to determine the 

sign, in a right-handed system with Y1 > 0 and Z3 > 0, it is 
necessary only to examine X4. The sign of z is the sign of 
- X 4 .  

For the purpose of programming a computer to calculate 
the standard deviation of the torsion angle, equation (15) 
seems most appropriate. If, however, the six structural par- 
ameters are known, then equation (16) would be more 
suitable. 

The function-and-error program of Busing & Levy (1961) 
included a provision for calculating the dihedral angle and 
its standard error for two planes each defined by three 
atoms. The torsion-angle calculation is a special case in 
which two atoms are common to both planes. In this pro- 
gram the standard error is calculated from the full covari- 
ance matrix, and the necessary derivatives are evaluated by 
numerical differentiation. 

We thank Dr Richard E. Marsh for valuable discussions 
and the referee for many helpful comments. 
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Normal probability plot analysis of small samples.* By W A L T E R  C. HAMILTON, Chemistry Department, Brook- 
haven National Laboratory, Upton, New York, U.S.A. find S. C. ABRAHAMS, Bell Telephone Laboratories, Incorporated, 
Murray Hill, New Jersey, U.S.A. 

(Received 20 August 1971) 

In using normal probability plots for comparing two sets of crystallographic data [Abrahams, S. C. & 
Keve, E. T. (1971), Acta Cryst. A27, 157] note should be taken of the fact that the expected values of normal 
order statistics are not given exactly by the percentage points of the normal distribution. This becomes an 
important consideration only for small samples. Tables of expected ranked exact moduli of normal observa- 
tions, for sample sizes to 41, are presented: these are useful for half-normal probability plots. 

Differences between independent measurements or cal- 
culated values of the same ith crystallographic quantity, 
At = F(1)~ - F(2)t, are readily analyzed by the normal prob- 
ability plot method (Abrahams & Keve, 1971) in terms of 
the pooled standard deviation a t =  [o'2F(1)t÷ o'2F(2)1] 1/2. A 
plot of the j ranked values of the weighted deviations 
A&h (where i=  1 refers to the largest AJch) against the 
expected values ~(iIj) should result in a scatter of points 
about a straight line of unit slope that passes through the 
origin. If the weighted deviations are drawn from a normal 
distribution, a reasonable assumption for a crystallographic 
experiment, then the expected values for large j are given 
approximately by the percentage points Xt of the normal 
distribution, with 

tfx, exp ( - a212) da = I (J -  2 i+  1)/jl (1) e (x , )=  V~ -xi  

* Research performed in part under the auspices of the 
U.S. Atomic Energy Commission. 

For  small values of j ,  especially for j <  50, the deviations 
between the values given by equation (1) and the exact 
values as tabulated by Harter (1961) become appreciable, 
especially at the extremes of the array. Four examples are 
given in Table 1. The exact values should always be used 
for small samples. 

If  the sign of At is without significance, as in comparison 
of two sets of position parameters, the half-normal proba- 
bility plot should be used (Abrahams & Keve, 1971). For  
large samples, the expected values may again be obtained 
from the percentage points of the normal distribution, 
with P(Xt) = ( 2 j -  2 i+  1)/2j.t F o r j  small, these approximate 
values are appreciably in error, and the exact values should 
be used. The expected value of the i th largest modulus of 

t The expression given for this quantity in Abrahams & 
Keve (1971) is misprinted as (2i+1)/2j; it should have read 
(2i-1)/2j,  where i=  1 refers to the smallest observation. For 
consistency with the full-normal case notation, we use the 
expression above, where i=  1 refers to the largest observation. 
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Table  1. Expected values of normal order statistics 
Approximate  values are obtained from percentage points of the normal  distribution as proposed by Abrahams & Keve (1971). 

Exact values are f rom Harter  (1961). Note that ~ ( j + l  - i l j ) =  - ~ ( i  l J). 

j = 5  j = 5 0  
Approx.  Exact Approx.  Exact 

i P(XO ~(i I J) ~(i l J) i P(X~) ~(i I J) ~(i I J) 
1 0-80 1-282 1"163 1 0.98 2.326 2.249 
2 0.40 0.524 0.495 2 0.94 1"881 1.855 
3 0-00 0"000 0-000 3 0-90 1-645 1-629 

4 0"86 1.476 1-464 
j = 1 0  5 0.82 1"341 1"331 

1 0"90 1.645 1-539 6 0.78 1"226 1.218 
2 0"70 1.036 1"001 7 0"74 1"126 1.119 
3 0-50 0.675 0.656 8 0.70 1.037 1.030 
4 0.30 0.385 0.376 9 0"66 0.954 0.949 
5 0-10 0.126 0"123 10 0.62 0.878 0.873 

11 0"58 0.806 0.802 
12 0"54 0-739 0"735 

j = 2 5  13 0"50 0"674 0.671 
1 0"96 2.054 1"965 14 0"46 0-613 0"610 
2 0-88 1"555 1"524 15 0.42 0.553 0.551 
3 0.80 1"282 1.263 16 0-38 0"496 0.494 
4 0.72 1.080 1"067 17 0"34 0"440 0-438 
5 0"64 0-915 0"905 18 0"30 0"385 0"384 
6 0"56 0.772 0.764 19 0"26 0.332 0-330 
7 0"48 0-643 0.637 20 0"22 0"279 0"278 
8 0"40 0.524 0"519 21 0" 18 0.228 0.227 
9 0.32 0-412 0.409 22 0-14 0"176 0.176 

10 0-24 0"305 0"303 23 0-10 0"126 0"125 
11 0" 16 0"202 0.200 24 0.06 0.075 0.075 
12 0-08 0"100 0"100 25 0"02 0"025 0.025 

Table  2. Expected vahtes of half-normal order statistics (ranked moduli of  normal observations) 
Approximate  values are obtained from percentage points of the normal  distr ibution: exact values have been calculated from 

equation (2). 

j = 5  j = 2 5  
Approx.  Exact Approx.  Exact 

i P(XO ~1/2(i l J) ~1/2(i [J) i P(Xi) ~1/2(i I J) ~i/2(i I J) 
1 0.90 1.645 1.570 1 0.98 2-326 2.254 
2 0.70 1.036 1.044 2 0.94 1.881 1.860 
3 0-50 0.675 0-712 3 0.90 1.645 1.635 
4 0-30 0.385 0.448 4 0.86 1.476 1.470 
5 0-10 0.126 0.216 5 0-82 1-341 1-338 

6 0-78 1.227 1.226 
7 0.74 1.126 1.128 
8 0.70 1.036 1.039 

j =  10 9 0.66 0.954 0.958 
1 0.95 1.960 1.881 10 0.62 0.878 0-883 
2 0-85 1.440 1.424 11 0.58 0.806 0.813 
3 0-75 1.150 1.151 12 0.54 0.739 0.746 
4 0.65 0.935 0.944 13 0.50 0.675 0.683 
5 0.55 0.755 0.772 14 0.46 0.613 0.622 
6 0"45 0.598 0.621 15 0.42 0.553 0.564 
7 0.35 0.454 0.483 16 0.38 0.496 0.507 
8 0-25 0.319 0.355 17 0-34 0.440 0.452 
9 0.15 0.189 0.233 18 0-30 0.385 0.399 

10 0.05 0.063 0.115 19 0.26 0.332 0.347 
20 0.22 0.279 0.295 
21 0.18 0.228 0.245 
22 0.14 0-176 0.195 
23 0-10 0.126 0.146 
24 0.06 0.075 0.097 
25 0.02 0.025 0.048 
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Table  3. Expected values of  ranked moduli of normal observations, calculated by numerical integration of Epuation (2) 

j is the sample size, i is the rank of the observation, and i =  1 is the largest observation" j=2[1]  41, i=  1, j.  

t •  2 '1 4 5 6 7 8 9 

I I.I28 1.326 1.465 1.511'0 1.654 1.721, 1 . 1 8 5  1.835 
2 .467 .732 .911 1.044 1.149 1.235 I.$07 1.370 
3 . ] 3 5  . 5 5 3  . 7 1 2  . 8 3 5  . 9 3 4  1 . 0 1 8  1 = 0 8 9  
4 .262 .448  .589 .702  .796  . 8 7 5  
5 .216 . 377  .504 . 6 0 8  . 6 9 6  

6 . 1 8 3  . 3 2 6  . 4 4 2  . 5 3 8  
7 . 1 6 0  . 2 8 8  . 3 9 3  
8 .141 . 2 5 7  
9 . 1 2 7  

£• 10 11 12 13. 14 I5 16 17 

1 1.881 1.921 1.958 1.992 2.023 2.051 2.077 2.1.02 
2 1 . 4 2 4  1 . 4 7 3  1.517 1.55@ 1.592 1.626 1.656 1 . 6 8 5  
3 1.151 1.206 1.25~ 1.299 1.339 1.3761 1.410 1.442 
4 .944 1.005 1.059 I.I07 1.151 1.191 1.279 1.263 
5 .772 .838 .897 .949  .997 1.060 1.080 1.117 

6 . 6 2 1  .693 .756 . 8 1 5  .864 . 9 1 0  .953 .992 
7 .483 .561 .6~9 .690 .745 .794 .839 .881 
8 .355, . 6 3 9  .512 . 5 7 1 .  . 6 3 5  . 6 8 8  . 1 3 6  . 1 8 0  
9 . 2 3 3  . 323 .402 .6111 .533 .589'  .640 . 6 8 6  

I0 .115 . 2 1 3  .297 .3711 .631 . 4 9 6  ~550 .599 

11 .105 .I~6 .275 .345 .408 .466 .516 
12 .097 .182 .256 .322 .382 .436 
13 .090 .169 .239 .302 .'159 
14 .086 . 1 5 8  . 2 2 5  . 2 8 5  
15 .07<I . 1 4 9  . 2 1 2  

16 . 074  . 1 4 0  
17 . 0 7 0  

1• 
26 27 28 ?9 30 ]1. ]Z 33 

1 2 .269  2 . 2 8 3  2 .297  2 . 3 1 0  2 . 3 2 3  2.335 2 .347  2 . 3 5 9  
2 1 . 8 7 7  1.894 1.9|0 1.925 1.939 1.951 1.967 1.980 
3 1 . 6 5 3  1 . 6 7 1  1 . 6 8 9  1 . 7 0 5  1 . 7 2 1  1 . 7 3 6  1 . 7 5 1  1 . 7 6 5  
4 1.490 1.510 1.528 1.546 1.562 1.519. 1.594 1.609 
5 1 . 3 5 9  1 . ] 8 0  1 . 3 9 9  1 . 4 1 8  1 . 6 3 6  1 . 6 5 3  1 . 4 6 9  1 . 4 8 5  

6 1.248 1.270 1.290 1.310 1.329 1.347 1.364 1.380 
7 1 . 1 3 1  1 . 1 7 4  I.I~5 1.215 1.235 1.254 1 .272  1 . 2 8 9  
8 1 . 0 6 4  1 . 0 8 7  1 . 1 0 9  1 . 1 3 1  1.151 1 . 1 ? 1  1 . 1 8 9  1 . 2 0 7  
9 .984 1.008 1.031 1.053 1.075 1.095 1.114 1.133 

10 .910 .935 .959 .982 1.004 1.025 1.045 1.064 

11 . 8 6 0  . 8 6 7  . 8 9 2  . 9 1 5  . 938  .960 . 9 8 1  1 . 0 0 1  
12 .715 . 8 0 2  .828 .853 .876 .899  .920 . 9 4 1  
13 .712 .741  .767 .793 .817 .840 .863 .884  
14 . 6 5 3  . 6 8 2  . 7 1 0  . 7 3 6  .761  . 7 8 5  . 808  . 8 3 0  
15 . 5 9 6  . 6 2 6  . 6 5 4  .682"  . 7 0 7  . 732 -  . 7 5 6  . 7 7 8  

16 .540 .571 .601 .629 .656 .6~1 .705 . 7 2 9  
17 . 4 8 6  . 5 1 9  .51,9 .5781 .606 .632  .657 .681  
18 . 4 3 4  . 4 6 8  . 4 9 9  . 5 2 9  . 5 5 7  .5-14 . 6 1 0  . 6 3 4  
19 .383 . 4 1 8  .450 .481 .510 .518  .564 . 589  
20 . 3 3 3  . 169  .402 . 4 3 4  .464 .492  .S20 . 5 4 6  

21 . 2 8 6  . 1 2 1  .355 .388" .419 .448  .476 .503  
22 .215  . 2 7 3  . 3 3 9  . 3 6 7  . 3 7 5  . 4 9 5  . 4 3 4  . 6 6 1  
2 ]  .188 . 2 2 7  .264 .298  . 3 3 1  . 3 6 Z  .392  . 4 2 0  
24 .140 .181  .219 . 255  .288 .320  .351 . 3 8 0  
25 . 0 9 3  . 1 3 5  .174 . 2 1 1  . 2 4 6  . 279  . 3 1 0  . 1 4 0  

26 . 0 4 7  . 0 9 0  . 1 3 0  . 1 6 8  . 2 0 6  . 2 3 &  . 2 7 0  . 3 0 1  
,E7 . 0 4 5  .087 .126 .163 .198 . Z 3 1  .262 
28 .0~3 .084 . 1 2 2  . 1 5 8  . 1 9 2  .226 
29 . 042  .081 . 1 1 8  . 1 5 3  . 1 8 6  
30 .040 .079 .114 .148 

3.1 . 0 3 9  . 0 7 6  .III 
32 .038  . 0 7 4  
33 . 0 3 7  

i ' ~  18 19 ZO ~1 22 23 24 25 

1 2 .125  2 . 1 4 6  2 .167  Z .186  2 . 2 0 4  2 .2~1  2 . 2 3 8  2 . 2 5 4  
2 1 .712  1 . 7 3 7  1 .760  1 . 7 8 2  1 .803  1 . 8 2 3  1 . 8 4 2  1 . 8 6 0  
3 I.~II 1 . 4 9 9  1.5Z5 1 . 5 4 9  1.572 1.596 1.615 1.635 
4 1.295 1.324 1.351 1.379 1.403 1.427 I.(49 1.470 
5 1 . 1 ~ 1  1 . 1 8 3  1 . 2 1 3  1 . 2 4 1  1 . 2 6 7  1 . 2 9 2  1 . 3 1 6  1 . 3 3 8  

6 1 . 0 2 8  1 . . 0 6 2  1 . 0 9 4  1 , 1 2 3  1 . 1 5 1  1 . 1 7 7 ,  1 . 2 0 2  1 . 2 2 6  
7 . 9 1 9  . 9 5 5  . 9 8 8  1 . 0 2 0  1 . 0 4 9  1.077: ,  1 . 1 0 3  1 . 1 2 8  
8 . 8 2 0  . 8 5 8  . 8 9 3  . 9 2 6  . 9 3 7  . 9 8 6 '  1 . 0 1 3  1 . 0 3 9  
9 . 7 ~ 9  . 7 6 9  . 8 0 6  .8¢,0 . 8 7 2  . 9 0 2  . 9 3 1  . 9 5 8  

10 .644 . 685  .724 .760 .793 .825  .855 .883  

II . 5 6 3  . 6 0 6  . 6 4 7  . 6 8 4  . 7 1 9  .752 .783 . 8 1 3  
12 . 4 8 6  . 5 3 1  . 5 7 3  . 6 1 2  . 6 4 9  . 6 8 ]  . 7 1 6  . 7 6 6  
13 . 4 1 1  . 4 5 9  . 5 3 3  . 5 4 4  . 5 8 2  . 6 1 8  . 6 5 1  . 6 8 3  
14 . 3 3 9  . 3 8 9  . 4 3 5  .478  . 5 1 7  . 5 5 5 .  . 5 8 9  . 6 2 2  
15 . 2 6 9  . 3 2 1  .3f~9 . 4 1 4  . 4 5 5  . 4 9 4  . 5 3 0  . 5 6 4  

16 .ZOO .Z$5 .305 . 3 5 2  .395 . I ,  35 .472 .501 
17 .133  . 1 9 0  .243  .291 .336  . 3 7 7  .416  . 4 5 2  
18 . 0 6 6  . 1 2 6  . 1 8 1  . 2 3 1  . 2 7 8  . 3 2 1  . 1 6 1  . 3 9 9  
19 . 0 6 3  . 1 ~ 0  . 1 7 ]  . 221  . 2 6 6  . 3 0 8  . 3 4 7  
20 .060 .115 .165 .212  .255 .295  

21 .057, .II0 .15/¢ .203 .245 
22 .055 .105 .152 .195 
2 ]  .05?, .I01 . 1 6 6  
24 .050  . 0 9 7  
25 .0 48 

]4  35 36 31 38 39 40 41 

i 
I 2 .370  2 . 3 8 0  2 .391  2 .401  2.411 2 .420  Z .429  2 .438  
2 i . 9 9 3  2 . 0 0 5  2 .016  Z. 0?8 2 .039  2.054~ 2 .060  2 .070  
] 1 .779  1 .792  1 .804 1 .817  1 .829  1 .840  1 .852  1 .863  
4 1 . 6 2 4  1 . 6 3 8  1 . 6 5 1  1 . 6 6 5  1 . 6 7 7  1 .6q0  1 . 7 0 2  1 . 7 1 3  
5 1.501 1.515 1.530 1.543 I.557 1.570. 1.582 1.594 

6 1.197 1.412 1.427 1.441 1.455 1.469 1.482 1.495 
7 1.]06 1.322 1.337 1.352 1.367 1.381 1.395 1.408 
8 1.225 1.241 1.258 1.273 1.288 1.303 1.317 I.]6D 
9 1.151 1.168 1.185 1.201 1.217 1.231 1.246 1.260 

I0 1.083 I.I01 1.118 1.135 1.151 1.166 1.182 1.196 

II 1.020 1.038 1.056 1.073 1.090 1.136 1.121 1.136 
12 .960 .980 .998 1.016 1.0~3 1.049 1.065 1.080 
13 .904 .924 .943 .961 .979 .996 1.012 1.028 
16 .851 .871 .891 .909  .927 .945 .962  .978  
15 .800 .821 . 861  .860 .878 .8'~6 . 9 1 3  .930 

16 .751 . 7 7 2  .793 .812  .831 . 8 5 0  . 8 6 7  . 8 8 5  
17 .706 .7Z6 .747 .767  .7R6 .8o5 .823 .841 
18 .658 .680 .702 . 7 2 ]  .743 .76Z .781 .798  
19 . 6 1 3  . 6 3 7  . 6 5 9  . 6 8 0  . 7 0 1  . 7 2 0  . 7 3 9  . 7 5 8  
20 .570 . 5 9 4  .617  .639 .660 .6~0' .699 .718 

ZI  .528 . 5 5 3  .576 .598 .6Z0 .660  .660 . 6 8 0  
22 .687 . 5 1 2  .536 .559 .581 . 632  .622  . 6 6 2  
23 .447 .472  .697 .5Z0 .563 .564  .585 .605  
24 .407  . 4 3 3  .t ,58 .482" .506 . 5 2 8  .549 .570  
25 .368 .395 .421 .445  .469 .492 .513  .534 

26 . 3 3 0  . 3 5 7  .384  . 4 0 9  .433  .456J .479  .500  
27 .292  . 3 2 0  .31,7 . 3 7 $  .398  .421 . 4 4 4  . 6 6 6  
28 .234 .283  .311 .338  .363 .387  .411 . 4 3 3  
29 .217 . 2 4 7  .275 .303 .329 .353  .371 .600  
30 .181 . 2 1 1  .240 .268 .295 .320 .344 .368  

31 .1¢,4 . 1 7 5  .205  . 2 3 4  . 2 6 1  . 2 8 7  . 3 1 2  . 3 3 6  
32 .108 .140  .171 .2C0 .228 .256 .280 . 3 0 4  
33 .072  . 1 0 5  .136 .166  . 1 9 5  . 2 2 2  .248 .273  
34 .036  . 0 7 0  .102  1133 .162 .190  . 2 1 6  .242  
35 . 0 3 5  .068 . 099  .129 .158 . 1 8 5  .211 

36 . 0 3 6  . 0 6 6  . 0 9 7  . 1 2 6  . 1 5 4  . 1 8 0  
37 . 0 ] 3  . 0 6 4  . 094  .123 .150 
38 .032 . 0 6 3  . 092  . 1 2 0  
39 . 031  .061 .090  
40 .031 .060 

41 .030  
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an observation in a sample of size j drawn from a normal 
population with zero mean and unit variance is given 
exactly by 

2y~ 
~,z2(ilj)-- ( j - i ) !  ( i -  1)! 

i oo x exp ( -  X2/2) 
X q/--~- ( 2 P -  1)J-'(2 2P)~-Idx (2) 

0 t - -  
w h e r e  

_ 

e - -  exp ( -  
V+:7~ 

A comparison of exact [equation (2)] and approximate 
expected magnitudes of the ranked half-normal order 
statistics, for three values of j ,  is given in Table 2. The 
exact moduli, for values of j = 2 [ 1 ]  41, for all values of 

i (to our knowledge, not previously published) are presented 
in Table 3. The normal approximation is satisfactory for 
intermediate values of i (cf. Table 2), but remains in error 
by about 2 % for values of j as high as 400. The extreme 
smallest value has a limiting exact value which is double 
that for the normal approximation, although the absolute 
difference between exact and approximate values is of no 
practical importance for large values of j .  

Complete values of the full- and half-normal order stat- 
istics will appear in Volume 4 of International Tables for 
X-ray Crystallography. 
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Multiple diffraction effects in neutron single-crystal diffractometry. By R. COLELLA*, Department of Materials 
Science and Engineering, Bard Hall, Cornell University, Ithaca, N. Y. 14850 U.S.A. 

(Received 1 February 1971) 

The n-beam dynamical theory of diffraction is applied to multiple neutron diffraction. A computer program 
has been adapted to the neutron case from one originally developed for high energy electron diffraction in 
reflection. The integrated intensities are computed for the two and multibeam cases of the 002 reflection 
and compared with experiment. It is shown that only a negligible fraction of the incident beam satisfies the 
conditions for multiple diffraction. 

The importance of multiple neutron diffraction in the Bragg 
case was recognized early by Moon & Shull (1961) and 
subsequently by Borgonovi & Caglioti (1962). The latter 
authors found remarkable effects in the 002 reflection from 
mosaic crystals such as nickel, aluminum, and pyrite, 
whereas they were not able to observe any appreciable effect 
in relatively perfect crystals such as LiF and NaCI. Since 
multiple diffraction is essentially related to a dynamical in- 
teraction among diffracted beams, the reason for this nega- 
tive result is not clear, and a theoretical evaluation of these 
effects seems worthwhile. 

The appropriate tool for this interpretation is the n-beam 
dynamical theory of diffraction and, for this purpose, a 
computer program originally developed for high energy 
electron diffraction in reflection (Colella, 1971; Colella & 
Menadue, 1971) has been adapted to the neutron case with 
a few minor modifications. 

In Borgonovi & Caglioti's experiment, the crystal was 
oriented for the 002 Bragg reflection and then rotated around 
the [002] normal. The intensity was measured as a function 
of ~0, the azimuthal angle. The divergence of the incident 
beam in the diffraction plane, of the order of several minutes 
of arc (Caglioti & Ricci, 1962), was much higher than the 
Darwin width of the crystal. In this situation, the intensity 
measured by the counter corresponds to the integrated in- 
tensity of the diffraction profile for an co scan. For the sake 
of comparison with Borgonovi & Caglioti's experiment, 

* Present address: Purdue University, Department of Phys- 
ics, Lafayette, Indiana 47907, U.S.A. 

the 002 integrated intensity for an co scan (Bragg case) was 
computed when one or two strong reflections other than 002 
were simultaneously excited. In relation to the nickel 002 
azimuthal plot obtained by Borgonovi & Caglioti, nu- 
merous multibeam rocking curves for LiF and NaC1 single 
crystals were computed in the vicinity of ~0 = 36-37 °, where 
the 002 intensity suffers the most drastic changes.t  The 
results are reported in Table 1. The 002 integrated intensity 

The azimuthal angle ~0=0 corresponds to a [010] axis 
lying in the diffraction plane. 

Table 1. The effects of simultaneous reflections on the 002 
integrated intensity 

The simultaneous reflections are listed in the second column 
from the left. When two simultaneous reflections are involved 
(four-beam case), their hkl indices are indicated by parentheses. 
The maximum and minimum percentage changes of the 002 
integrated intensity are indicated, along with the angular width 
on the azimuthal scale. 12 is the 002 two-beam integrated 
intensity. 

Crystal hkl AI/12 ( x 100) Aq~ (sec) 
LiF T31 - 15 14 

+466 

( 042] + 33 8.3 
040] - 30 

NaC1 i31 - 2.5 3" 1 
+31.4 


