Fig. 1 shows that the various coordinates in (15) can be replaced as follows:

$$
\begin{array}{cl}
Y_{1}=r_{12} \sin \varphi_{1} & Z_{1}=r_{12} \cos \varphi_{1} \\
Z_{3}=r_{23} & Z_{4}=r_{23}-r_{34} \cos \varphi_{2} \\
& \left(X_{4}^{2}+Y_{4}^{2}\right)^{1 / 2}=r_{34} \sin \varphi_{2},
\end{array}
$$

where $r_{m n}$ is the distance between atoms m and n. Equation (15) for the variance of the torsion angle, τ, then becomes:

$$
\begin{align*}
\sigma^{2}(\tau) & =\frac{\sigma_{1}^{2}}{r_{12} \sin ^{2} \varphi_{1}}+\frac{\sigma_{2}^{2}}{r_{23}^{2}}\left[\left(\frac{r_{23}-r_{12} \cos \varphi_{1}}{r_{12} \sin \varphi_{1}}\right)^{2}\right. \\
& \left.-2\left(\frac{r_{23}-r_{12} \cos \varphi_{1}}{r_{12} \sin \varphi_{1}}\right) \cot \varphi_{2} \cos \tau+\cot ^{2} \varphi_{2}\right] \\
& +\frac{\sigma_{3}^{2}}{r_{23}^{2}}\left[\cot ^{2} \varphi_{1}-2\left(\frac{r_{23}-r_{34} \cos \varphi_{2}}{r_{34}}\right) \sin \varphi_{2}\right) \cot \varphi_{1} \cos \tau \\
& \left.+\left(\frac{r_{23}-r_{34} \cos \varphi_{2}}{r_{34} \sin \varphi_{2}}\right)^{2}\right]+\frac{\sigma_{4}^{2}}{r_{34}^{2}} \frac{\sin ^{2} \varphi_{2}}{} . \tag{16}
\end{align*}
$$

Use of the special coordinates in $\left(8^{\prime}\right)$ leads to the torsion angle:

$$
\begin{equation*}
|\tau|=\cos ^{-1} \frac{Y_{4}}{\left(X_{4}^{2}+Y_{4}^{2}\right)^{1 / 2}} . \tag{17}
\end{equation*}
$$

The convention of the 'right-hand rule' (Klyne \& Prelog, 1960) is used to fix the sign of τ. In order to determine the
sign, in a right-handed system with $Y_{1}>0$ and $Z_{3}>0$, it is necessary only to examine X_{4}. The sign of τ is the sign of $-X_{4}$.

For the purpose of programming a computer to calculate the standard deviation of the torsion angle, equation (15) seems most appropriate. If, however, the six structural parameters are known, then equation (16) would be more suitable.

The function-and-error program of Busing \& Levy (1961) included a provision for calculating the dihedral angle and its standard error for two planes each defined by three atoms. The torsion-angle calculation is a special case in which two atoms are common to both planes. In this program the standard error is calculated from the full covariance matrix, and the necessary derivatives are evaluated by numerical differentiation.

We thank Dr Richard E. Marsh for valuable discussions and the referee for many helpful comments.

References

Busing, W. R. \& Levy, H. A. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, Paper 12, pp. 140-145. Edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman. New York: Pergamon Press.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521.

Acta Cryst. (1972). A28, 215
Normal probability plot analysis of small samples.* By Walter C. Hamilton, Chemistry Department, Brookhaven National Laboratory, Upton, New York, U.S.A. ănd S. C. Abrahams, Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A.
(Received 20 August 1971)
In using normal probability plots for comparing two sets of crystallographic data [Abrahams, S. C. \& Keve, E. T. (1971), Acta Cryst. A27, 157] note should be taken of the fact that the expected values of normal order statistics are not given exactly by the percentage points of the normal distribution. This becomes an important consideration only for small samples. Tables of expected ranked exact moduli of normal observations, for sample sizes to 41, are presented: these are useful for half-normal probability plots.

Differences between independent measurements or calculated values of the same i th crystallographic quantity, $\Delta_{i}=F(1)_{t}-F(2)_{i}$, are readily analyzed by the normal probability plot method (Abrahams \& Keve, 1971) in terms of the pooled standard deviation $\sigma_{i}=\left[\sigma^{2} F(1)_{i}+\sigma^{2} F(2)_{i}\right]^{1 / 2}$. A plot of the j ranked values of the weighted deviations Δ_{i} / σ_{i} (where $i=1$ refers to the largest Δ_{i} / σ_{i}) against the expected values $\xi(i \mid j)$ should result in a scatter of points about a straight line of unit slope that passes through the origin. If the weighted deviations are drawn from a normal distribution, a reasonable assumption for a crystallographic experiment, then the expected values for large j are given approximately by the percentage points X_{l} of the normal distribution, with

$$
\begin{equation*}
P\left(X_{i}\right)=\frac{l}{\sqrt{2 \pi}} \int_{-X_{i}}^{X_{i}} \exp \left(-\alpha^{2} / 2\right) \mathrm{d} \alpha=|(j-2 i+1) / j| \tag{1}
\end{equation*}
$$

[^0]For small values of j, especially for $j<50$, the deviations between the values given by equation (1) and the exact values as tabulated by Harter (1961) become appreciable, especially at the extremes of the array. Four examples are given in Table 1. The exact values should always be used for small samples.
If the sign of Δ_{1} is without significance, as in comparison of two sets of position parameters, the half-normal probability plot should be used (Abrahams \& Keve, 1971). For large samples, the expected values may again be obtained from the percentage points of the normal distribution, with $P\left(X_{i}\right)=(2 j-2 i+1) / 2 j . \dagger$ For j small, these approximate values are appreciably in error, and the exact values should be used. The expected value of the i th largest modulus of
\dagger The expression given for this quantity in Abrahams \& Keve (1971) is misprinted as $(2 i+1) / 2 j$; it should have read $(2 i-1) / 2 j$, where $i=1$ refers to the smallest observation. For consistency with the full-normal case notation, we use the expression above, where $i=1$ refers to the largest observation.

Table 1. Expected values of normal order statistics
Approximate values are obtained from percentage points of the normal distribution as proposed by Abrahams \& Keve (1971). Exact values are from Harter (1961). Note that $\xi(j+1-i \mid j)=-\xi(i \mid j)$.

i	$j=5$			i	$P\left(X_{i}\right)$	$j=50$	
	$P\left(X_{i}\right)$	Approx. $\xi(i \mid j)$	Exact $\xi(i \mid j)$			Approx.	Exact
1	0.80	1.282	$1 \cdot 163$	1	0.98	2.326	2.249
2	$0 \cdot 40$	0.524	0.495	2	0.94	1.881	1.855
3	0.00	0.000	0.000	3	$0 \cdot 90$	1.645	1.629
				4	0.86	1.476	1.464
	$j=10$			5	0.82	$1 \cdot 341$	$1 \cdot 331$
1	$0 \cdot 90$	1.645	1.539	6	0.78	$1 \cdot 226$	$1 \cdot 218$
2	$0 \cdot 70$	1.036	1.001	7	0.74	$1 \cdot 126$	$1 \cdot 119$
3	$0 \cdot 50$	$0 \cdot 675$	0.656	8	0.70	1.037	1.030
4	$0 \cdot 30$	0.385	0.376	9	$0 \cdot 66$	0.954	0.949
5	$0 \cdot 10$	$0 \cdot 126$	$0 \cdot 123$	10	$0 \cdot 62$	0.878	0.873
				11	0.58	0.806	0.802
	$j=25$			12	0.54	0.739	0.735
				13	$0 \cdot 50$	0.674	0.671
1	0.96	2.054	1.965	14	$0 \cdot 46$	$0 \cdot 613$	$0 \cdot 610$
2	$0 \cdot 88$	1.555	1.524	15	$0 \cdot 42$	0.553	$0 \cdot 551$
3	$0 \cdot 80$	1.282	1.263	16	$0 \cdot 38$	$0 \cdot 496$	0.494
4	$0 \cdot 72$	1.080	1.067	17	$0 \cdot 34$	$0 \cdot 440$	0.438
5	$0 \cdot 64$	0.915	0.905	18	$0 \cdot 30$	0.385	0.384
6	0.56	0.772	0.764	19	$0 \cdot 26$	0.332	0.330
7	$0 \cdot 48$	0.643	0.637	20	0.22	$0 \cdot 279$	$0 \cdot 278$
8	$0 \cdot 40$	0.524	0.519	21	$0 \cdot 18$	$0 \cdot 228$	0.227
9	$0 \cdot 32$	0.412	0.409	22	$0 \cdot 14$	$0 \cdot 176$	$0 \cdot 176$
10	$0 \cdot 24$	$0 \cdot 305$	$0 \cdot 303$	23	$0 \cdot 10$	$0 \cdot 126$	$0 \cdot 125$
11	$0 \cdot 16$	$0 \cdot 202$	$0 \cdot 200$	24	0.06	0.075	0.075
12	0.08	$0 \cdot 100$	$0 \cdot 100$	25	$0 \cdot 02$	0.025	0.025

Table 2. Expected values of half-normal order statistics (ranked moduli of normal observations)
Approximate values are obtained from percentage points of the normal distribution: exact values have been calculated from equation (2).

i	$P\left(X_{i}\right)$	$j=5$ Approx. $\xi_{1 / 2}(i \mid j)$	$\underset{\xi_{1 / 2}(i \mid j)}{\text { Exact }}$			$j=25$ Approx. $\xi_{1 / 2}(i \mid j)$	$\underset{\xi_{1 / 2}(i \mid j)}{\text { Exact }}$
	P(${ }_{2}$			i	$P\left(X_{i}\right)$		$\xi_{1 / 2}(i \mid j)$
	$0 \cdot 90$	1.645	1.570	1	$0 \cdot 98$	2.326	2.254
2	$0 \cdot 70$	1.036	1.044	2	0.94	1.881	1.860
3	$0 \cdot 50$	$0 \cdot 675$	$0 \cdot 712$	3	0.90	1.645	1.635
4	$0 \cdot 30$	0.385	0.448	4	0.86	1.476	1.470
5	0-10	$0 \cdot 126$	$0 \cdot 216$	5	0.82	$1 \cdot 341$	$1 \cdot 338$
				6	0.78	$1 \cdot 227$	1.226
				7	0.74	$1 \cdot 126$	$1 \cdot 128$
				8	0.70	1.036	1.039
		$j=10$		9	0.66	0.954	0.958
1	0.95	1.960	1.881	10	$0 \cdot 62$	0.878	$0 \cdot 883$
2	0.85	$1 \cdot 440$	1.424	11	$0 \cdot 58$	$0 \cdot 806$	$0 \cdot 813$
3	0.75	$1 \cdot 150$	$1 \cdot 151$	12	$0 \cdot 54$	$0 \cdot 739$	0.746
4	$0 \cdot 65$	0.935	0.944	13	0.50	0.675	0.683
5	0.55	0.755	$0 \cdot 772$	14	$0 \cdot 46$	$0 \cdot 613$	0.622
6	0.45	0.598	$0 \cdot 621$	15	$0 \cdot 42$	$0 \cdot 553$	$0 \cdot 564$
7	0.35	0.454	$0 \cdot 483$	16	0.38	$0 \cdot 496$	$0 \cdot 507$
8	$0 \cdot 25$	$0 \cdot 319$	$0 \cdot 355$	17	$0 \cdot 34$	$0 \cdot 440$	$0 \cdot 452$
9	$0 \cdot 15$	$0 \cdot 189$	0.233	18	$0 \cdot 30$	0.385	0.399
10	0.05	0.063	$0 \cdot 115$	19	$0 \cdot 26$	0.332	0.347
				20	$0 \cdot 22$	0.279	0.295
				21	$0 \cdot 18$	0.228	$0 \cdot 245$
				22	$0 \cdot 14$	$0 \cdot 176$	$0 \cdot 195$
				23	$0 \cdot 10$	$0 \cdot 126$	$0 \cdot 146$
				24	$0 \cdot 06$	0.075	0.097
				25	0.02	0.025	0.048

Table 3. Expected values of ranked moduli of normal observations, calculated by numerical integration of Epuation (2)
j is the sample size, i is the rank of the observation, and $i=1$ is the largest observation: $j=2[1] 41, i=1, j$.

		3	4	5	6	7	8	9		18	19	20	21	22	23	24	25
1	1.128	1.326	1.465	1.570	1.654	1.724	1.783	1.835	1	2.125	2.146	2.167	2.186	2.204	2.221	2.238	2.254
2	.467	. 732	. 911	1.044	1.149	1.235	1.307	1.370	2	1.712	1.737	1.760	1.782	1.803	1.823	1.842	1.860
3		. 335	. 553	.712	. 835	-934	1.018	1.089	3	1.411	1.499	1.525	1.549	1. 572	1.594	1.615	1.635
4			. 262	. 468	. 589	. 702	. 796	. 875	4	1.295	1.324	1.352	1. 379.	1.403	1.427	1.449	1.470
5				. 216	. 377	. 504	. 608	. 696	5	1.151	1.183	1.213	1.241	1.267	1.292	1.316	1.338
6					.183	. 326	. 442	. 538	6	1.028	1. 062	1.094	1.123	1.151	1.177	1.202	1.226
7						. 160	. 288	. 393	7	. 919	. 955	. 988	1.020	1.069	1.077	1.103	1.128
8							.141	. 257	8	. 820	.858	. 893	. 926	. 957	. 986	1.013	1.039
9								. 127	9	. 729	. 769	. 806	. 840	. 872	.902	. 931	. 958
									10	. 644	. 685	. 724	.760	. 793	. 825	. 855	. 883
	10	11	12	13.	14	15	16	17	11	.563	. 606	. 647	. 684	- 719	. 752	. 783	. 813
									12	. 486	. 531	. 573	. 612	. 649	. 683	. 716	. 746
									13	.411	. 459	. 503	. 564	. 582	. 618	. 651	. 633
1	1.881	1.921	1.958	1.992	2.023	2.051	2.077	2.1 .02	14	. 339	-389	. 435	. 478	. 517	. 555	. 589	. 622
2	1.424	1.473	1.517	1.556	1.592	1.626	1.656	1.685	15	. 269	. 321	. 369	.414	. 455	. 494	. 530	. 564
3	1.151	1.206	1.255	1.299	1. 339	1.376:	1.410	1.462									
4	. .944	1.005	1.059	1.107	1.151	1.191	1. 229	1.263	16	. 200	. 255	. 305	-352	. 395	.435	.472	. 507
5	.772	. 838	. 897	. 969	. 997	1.040	1.080	1.117	17	. 133	.140	. 243	. 291	. 336	.377	. 416	. 452
									18	. 066	. 126	-181	. 231	. 278	. 321	. 361	. 399
6	. 621	. 693	. 756	.813	. 864	- 910	. 953	. 992	19		. 063	. 120	. 173	. 221	. 266	. 308	. 347
7	. 483	. 561	. 629	. 690	. 745	. 744	. 839	$\begin{array}{r}\text { - } 881 \\ \hline 780\end{array}$	20			. 060	.115	. 165	. 212	. 255	. 295
8	. 355.	. 639	. 512	. 577.	. 635	. 688	. 736	. 780									
	. 233	. 323	. 402	-471:	. 533	. 589	. 640	.686 .599	21				. 057.	. 110	. 158	.203	. 245
10	. 115	.213	-297	. 371 i	.437	. 496	. 550	. 599	22					. 055	.105	.152	.195
									23						. 05%	. 101	.146
1		. 105	.176	. 275	. 345	. 408	-464	. 516	24							. 050	. 097
12			. 097	. 182	. 256	. 322	. 382	-436	25								. 048
13				. 090	. 169	-239	. 302	. 359									
14					. 084	. 158	- 225	. 285									
15						. 079	. 149	. 212		34	35	36	37	38	39	40	41
16							. 074	.140	1								
17								. 070		2.370	2.380	2.391	2.401	2.411	2.420	2.429	2.438
									2	1.993	2.005	2.016	2.028	2.039	2.050	2.060	2.070
									3	1.779	1.792	1.804	1.817	1.829	1.840	1.852	1.863
$\text { j } 26$		27	28	29	30	31.	32	33	4	1.624	1.638	1.651	1.665	1.677	1.640	1.702	1.713
									5	1.501	1.515	1.530	1.543	1.557	1.570.	1.582	1.594
	2.269	2.283	2.277	2.310	2.323	2.335	2.347	2.359	6	1.397	1.412	1.427	1.461	1.455	1.469	1.482	1.495
	1.877	1.894	1.910	1.925	1.939	1.953	1.967	1.980	7	1.306	1.322	1.337	1.352	1.367	1.331	1.395	1.408
	1.653	1.671	1.689	1.705	1.721	1.736	1.751	1.765	8	1.225	1.241	1.258	1.273	1.288	1.303	1.317 1.346	1.330 1.260
	1.490	1.510	1.528	1.546	1. 562	1.579.	1.594	1.609	9	1.151	1.168	1.185 1.118	1.271 1.135	1.217 1.151	1.232 1.166	1.246 1.182	1.260 1.196
5	1.359	1.380	1.379	1.418	1.436	$1-453$	1.469	1.485	10	1.083	1.101	1.118	1.135	1.151	1.166	1.182	1.196
	1.248	1.270	1.290	1.310	1.329	1.347	1.364	1.380	11	1.020	1.038	1.056	1.073	1.090	1.176	1.121	1.136
	1.151	1.174	1.175	1.215	1.235	1.254	1.272	1.239	12	. 960	. 988	. 998	1.016	1.033 479	1.049	1.065	1.080 1.028
8	1.064	1.087	1.109	1.131	1.151	1.171	1.189	1.207	13	. 904	. 924	. 943	.961 .909	.979 .927	.946 .945	1.012 .962	1.028 .978
9	. 984	1.008	1.031	1.053	1.075	1.095	1.114	1.133 1.064	14	.851 .800	.871 .821	.891 .841	.909 .860	.927 .878	.945 .846	.962 .913	.978 .930
10	.910	. 935	. 959	. 982	1.004	1.025	1.045	1.064	15	. 800	. 821	. 841	. 860	. 878	. 8176	.913	. 930
11	. 840	. 867	. 872	. 915	. 938	. 960	. 981	1.001	16	. 751	. 772	. 793	. 812	. 831	.850.	. 867	. 865
12	. 775	. 802	. 828	. 853	. 876	. 899	. 920	. 941	17	. 704	. 726	. 767	-767	. 786	. 865	. 823	841
13	. 712	. 741	. 767	.793	. 817	. 840	. 863	. 886	18	. 658	. 680	. 702	. 723	. 743	. 762	.781 .739	-798
14	. 653	. 682	. 710	. 736	. 761	-785	. 808	. 830	19	.613	6637 .694	.659 .617	.680 .639	. 701	. 720	.739 .699	.758 .718
15	. 596	.626	. 654	. 682	. 707	. 732	. 756	. 778	20	. 570	. 594	. 617	. 639	. 660	.630'	. 699	. 718
16	. 540	. 571	.601	. 629	. 656	. 691	. 705	. 729	21	. 528	. 553	. 576	.598 .554	. 620	. 640	. 660	. 680
17	. 486	. 514	. 569	. 578	. 606	-632	. 657	. 681	22	. 487	. 512	. 536	. 554	. 581	. 602	. 622	. 642
18	.434	. 468	. 499	. 529	. 557	. 5134	. 610	. 634	23	. 647	. 472	. 497	. 520	. 543	-564	585 .549	. 605
19	.383	. 418	. 450	. 481	. 510	-538	. 564	. 589	24	. 407	. 433	. 458	. 482	. 506	. 528	. 549	. 570
20	. 333	. 369	-402	. 4.34	. 464	. 442	. 520	.546	25	. 368	. 395	. 421	. 445	. 469	-442	. 513	. 534
21	. 284	. 321	. 355	. 388	. 419	. 448	. 476	. 503	26	- 330	. 357	. 384	. 409	. 433	. 456	. 479	. 500
22	.235	.273	. 339	. 363	. 375	-4)5	.434	. 461	27	. 292	-320	-347	- 373	. 398	. 421	. 444	. 466
23	. 188	.227	- 264	. 298	. 331	. 362	. 392	. 420	28	. 254	. 283	. 311	.338 .303	. 363	. 387	-411	. 433
24	. 160	.181	. 219	. 255	. 288	. 320	. 351	-380	29	. 217	. 247	. 275	. 303	. 329	. 353	.377	. 400
25	. 093	.135	. 174	. 211	. 246	.279	.310	. 340	30	. 181	. 211	. 240	. 268	. 295	. 320	. 344	. 368
26	. 047	. 090	.130	. 168	. 204	. 238	. 270	.301	31	. 164	.175	. 205	. 234	. 261	. 287	. 312	. 336
27		. 045	. 087	.126	.163	. 198	.231	. 262	32	. 108	. 140	.171	. 210	. 228	. 254	. 280	- 304
28			. 063	. 084	. 122	. 158	. 192	- 224	33	. 072	. 105	. 136	-166	. 195	. 222	+248	. 273
29				. 042	. 681	. 118	. 153	. 186	34	. 036	. 070	. 102	. 133	. 162	-140	. 216	. 242
30					. 040	.079	.114	. 148	35		.035	. 068	. 099	. 129	. 158	. 185	. 211
31						. 039	. 076	.111	36			. 034	. 066	. 097	. 126	.154	.180
32							. 038	. 074	37				.033	. 064	. 046	. 123	. 150
33								.037	38					. 032	. 063	. 092	.120
									39						.031	. 061	. 090
									40							.031	. 060
									41								. 030

an observation in a sample of size j drawn from a normal population with zero mean and unit variance is given exactly by

$$
\begin{align*}
\xi_{1 / 2}(i \mid j) & =\frac{2 j!}{(j-i)!(i-1)!} \\
& \times \int_{0}^{\infty} \frac{x \exp \left(-x^{2} / 2\right)}{l^{/ 2 \pi}}(2 P-1)^{j-i}(2-2 P)^{i-1} \mathrm{~d} x \tag{2}
\end{align*}
$$

where

$$
P=\frac{1}{\sqrt{2} \pi} \int_{-\infty}^{X} \exp \left(-\alpha^{2} / 2\right) \mathrm{d} \alpha
$$

A comparison of exact [equation (2)] and approximate expected magnitudes of the ranked half-normal order statistics, for three values of j, is given in Table 2. The exact moduli, for values of $j=2[1] 41$, for all values of
i (to our knowledge, not previously published) are presented in Table 3. The normal approximation is satisfactory for intermediate values of i (cf. Table 2), but remains in error by about 2% for values of j as high as 400 . The extreme smallest value has a limiting exact value which is double that for the normal approximation, although the absolute difference between exact and approximate values is of no practical importance for large values of j.

Complete values of the full- and half-normal order statistics will appear in Volume 4 of International Tables for X-ray Crystallography.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157.

Harter, H. L. (1961). Biometrika, 48, 151.

Acta Cryst. (1972). A28, 218.
Multiple diffraction effects in neutron single-crystal diffractometry. By R. Colella*, Department of Materials
Science and Engineering, Bard Hall, Cornell University, Ithaca, N. Y. 14850 U.S.A.
(Received 1 February 1971)

The n-beam dynamical theory of diffraction is applied to multiple neutron diffraction. A computer program has been adapted to the neutron case from one originally developed for high energy electron diffraction in reflection. The integrated intensities are computed for the two and multibeam cases of the 002 reflection and compared with experiment. It is shown that only a negligible fraction of the incident beam satisfies the conditions for multiple diffraction.

The importance of multiple neutron diffraction in the Bragg case was recognized early by Moon \& Shull (1961) and subsequently by Borgonovi \& Caglioti (1962). The latter authors found remarkable effects in the 002 reflection from mosaic crystals such as nickel, aluminum, and pyrite, whereas they were not able to observe any appreciable effect in relatively perfect crystals such as LiF and NaCl . Since multiple diffraction is essentially related to a dynamical interaction among diffracted beams, the reason for this negative result is not clear, and a theoretical evaluation of these effects seems worthwhile.

The appropriate tool for this interpretation is the n-beam dynamical theory of diffraction and, for this purpose, a computer program originally developed for high energy electron diffraction in reflection (Colella, 1971; Colella \& Menadue, 1971) has been adapted to the neutron case with a few minor modifications.

In Borgonovi \& Caglioti's experiment, the crystal was oriented for the 002 Bragg reflection and then rotated around the [002] normal. The intensity was measured as a function of φ, the azimuthal angle. The divergence of the incident beam in the diffraction plane, of the order of several minutes of arc (Caglioti \& Ricci, 1962), was much higher than the Darwin width of the crystal. In this situation, the intensity measured by the counter corresponds to the integrated intensity of the diffraction profile for an ω scan. For the sake of comparison with Borgonovi \& Caglioti's experiment,

* Present address: Purdue University, Department of Physics, Lafayette, Indiana 47907, U.S.A.
the 002 integrated intensity for an ω scan (Bragg case) was computed when one or two strong reflections other than 002 were simultaneously excited. In relation to the nickel 002 azimuthal plot obtained by Borgonovi \& Caglioti, numerous multibeam rocking curves for LiF and NaCl single crystals were computed in the vicinity of $\varphi=36-37^{\circ}$, where the 002 intensity suffers the most drastic changes. \dagger The results are reported in Table 1. The 002 integrated intensity
\dagger The azimuthal angle $\varphi=0$ corresponds to a [010] axis lying in the diffraction plane.

Table 1. The effects of simultaneous reflections on the 002 integrated intensity
The simultaneous reflections are listed in the second column from the left. When two simultaneous reflections are involved (four-beam case), their $h k l$ indices are indicated by parentheses. The maximum and minimum percentage changes of the 002 integrated intensity are indicated, along with the angular width on the azimuthal scale. I_{2} is the 002 two-beam integrated intensity.

Crystal	$h k l$	$\Delta I / I_{2}(\times 100)$	$\Delta \varphi(\mathrm{sec})$
LiF	$\overline{1} 31$	-15	14
		+466	
	$\binom{042}{040}$	+33	8.3
	-30		
NaCl	$\overline{1} 31$	-2.5	3.1
		+31.4	

[^0]: * Research performed in part under the auspices of the U.S. Atomic Energy Commission.

